Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Pharmacol Res ; 180: 106246, 2022 06.
Article in English | MEDLINE | ID: covidwho-2258937

ABSTRACT

Uncontrolled inflammation and failure to resolve the inflammatory response are crucial factors involved in the progress of inflammatory diseases. Current therapeutic strategies aimed at controlling excessive inflammation are effective in some cases, though they may be accompanied by severe side effects, such as immunosuppression. Phytochemicals as a therapeutic alternative can have a fundamental impact on the different stages of inflammation and its resolution. Biochanin A (BCA) is an isoflavone known for its wide range of pharmacological properties, especially its marked anti-inflammatory effects. Recent studies have provided evidence of BCA's abilities to activate events essential for resolving inflammation. In this review, we summarize the most recent findings from pre-clinical studies of the pharmacological effects of BCA on the complex signaling network associated with the onset and resolution of inflammation and BCA's potential protective functionality in several models of inflammatory diseases, such as arthritis, pulmonary disease, neuroinflammation, and metabolic disease.


Subject(s)
Genistein , Isoflavones , Genistein/pharmacology , Genistein/therapeutic use , Humans , Inflammation/drug therapy , Phytochemicals/pharmacology , Phytotherapy
2.
Biochem Pharmacol ; 209: 115437, 2023 03.
Article in English | MEDLINE | ID: covidwho-2209860

ABSTRACT

Fatal "cytokine storms (CS)" observed in critically ill COVID-19 patients are consequences of dysregulated host immune system and over-exuberant inflammatory response. Acute respiratory distress syndrome (ARDS), multi-system organ failure, and eventual death are distinctive symptoms, attributed to higher morbidity and mortality rates among these patients. Consequent efforts to save critical COVID-19 patients via the usage of several novel therapeutic options are put in force. Strategically, drugs being used in such patients are dexamethasone, remdesivir, hydroxychloroquine, etc. along with the approved vaccines. Moreover, it is certain that activation of the resolution process is important for the prevention of chronic diseases. Until recently Inflammation resolution was considered a passive process, rather it's an active biochemical process that can be achieved by the use of specialized pro-resolving mediators (SPMs). These endogenous mediators are an array of atypical lipid metabolites that include Resolvins, lipoxins, maresins, protectins, considered as immunoresolvents, but their role in COVID-19 is ambiguous. Recent evidence from studies such as the randomized clinical trial, in which omega 3 fatty acid was used as supplement to resolve inflammation in COVID-19, suggests that direct supplementation of SPMs or the use of synthetic SPM mimetics (which are still being explored) could enhance the process of resolution by regulating the aberrant inflammatory process and can be useful in pain relief and tissue remodeling. Here we discussed the biosynthesis of SPMs, & their mechanistic pathways contributing to inflammation resolution along with sequence of events leading to CS in COVID-19, with a focus on therapeutic potential of SPMs.


Subject(s)
COVID-19 , Fatty Acids, Omega-3 , Humans , SARS-CoV-2/metabolism , Cytokine Release Syndrome/drug therapy , Inflammation/metabolism , Fatty Acids, Omega-3/metabolism , Eicosanoids , Inflammation Mediators/metabolism , Docosahexaenoic Acids/therapeutic use , Randomized Controlled Trials as Topic
3.
Curr Drug Targets ; 23(17): 1578-1592, 2022.
Article in English | MEDLINE | ID: covidwho-2162791

ABSTRACT

COVID-19 is a multisystem disease caused by SARS-CoV-2 and is associated with an imbalance between the coagulation and fibrinolytic systems. Overall, hypercoagulation, hypofibrinolysis and fibrin-clot resistance to fibrinolysis predispose patients to thrombotic and thromboembolic events. In the lungs, the virus triggers alveolar and interstitial fibrin deposition, endothelial dysfunction, and pulmonary intravascular coagulation, all events intrinsically associated with the activation of inflammation and organ injury. Adding to the pathogenesis of COVID-19, there is a positive feedback loop by which local fibrin deposition in the lungs can fuel inflammation and consequently dysregulates coagulation, a process known as immunothrombosis. Therefore, fibrinolysis plays a central role in maintaining hemostasis and tissue homeostasis during COVID-19 by cleaning fibrin clots and controlling feed-forward products of coagulation. In addition, components of the fibrinolytic system have important immunomodulatory roles, as evidenced by studies showing the contribution of Plasminogen/Plasmin (Plg/Pla) to the resolution of inflammation. Herein, we review clinical evidence for the dysregulation of the fibrinolytic system and discuss its contribution to thrombosis risk and exacerbated inflammation in severe COVID-19. We also discuss the current concept of an interplay between fibrinolysis and inflammation resolution, mirroring the well-known crosstalk between inflammation and coagulation. Finally, we consider the central role of the Plg/Pla system in resolving thromboinflammation, drawing attention to the overlooked consequences of COVID-19-associated fibrinolytic abnormalities to local and systemic inflammation.

4.
Front Immunol ; 13: 886431, 2022.
Article in English | MEDLINE | ID: covidwho-1911044

ABSTRACT

Several COVID-19 convalescents suffer from the post-acute COVID-syndrome (PACS)/long COVID, with symptoms that include fatigue, dyspnea, pulmonary fibrosis, cognitive dysfunctions or even stroke. Given the scale of the worldwide infections, the long-term recovery and the integrative health-care in the nearest future, it is critical to understand the cellular and molecular mechanisms as well as possible predictors of the longitudinal post-COVID-19 responses in convalescent individuals. The immune system and T cell alterations are proposed as drivers of post-acute COVID syndrome. However, despite the number of studies on COVID-19, many of them addressed only the severe convalescents or the short-term responses. Here, we performed longitudinal studies of mild, moderate and severe COVID-19-convalescent patients, at two time points (3 and 6 months from the infection), to assess the dynamics of T cells immune landscape, integrated with patients-reported symptoms. We show that alterations among T cell subsets exhibit different, severity- and time-dependent dynamics, that in severe convalescents result in a polarization towards an exhausted/senescent state of CD4+ and CD8+ T cells and perturbances in CD4+ Tregs. In particular, CD8+ T cells exhibit a high proportion of CD57+ terminal effector cells, together with significant decrease of naïve cell population, augmented granzyme B and IFN-γ production and unresolved inflammation 6 months after infection. Mild convalescents showed increased naïve, and decreased central memory and effector memory CD4+ Treg subsets. Patients from all severity groups can be predisposed to the long COVID symptoms, and fatigue and cognitive dysfunctions are not necessarily related to exhausted/senescent state and T cell dysfunctions, as well as unresolved inflammation that was found only in severe convalescents. In conclusion, the post-COVID-19 functional remodeling of T cells could be seen as a two-step process, leading to distinct convalescent immune states at 6 months after infection. Our data imply that attenuation of the functional polarization together with blocking granzyme B and IFN-γ in CD8+ cells might influence post-COVID alterations in severe convalescents. However, either the search for long COVID predictors or any treatment to prevent PACS and further complications is mandatory in all patients with SARS-CoV-2 infection, and not only in those suffering from severe COVID-19.


Subject(s)
COVID-19 , CD4-Positive T-Lymphocytes , COVID-19/complications , Fatigue , Granzymes , Humans , Inflammation , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
5.
Adv Exp Med Biol ; 1352: 211-222, 2021.
Article in English | MEDLINE | ID: covidwho-1669705

ABSTRACT

INTRODUCTION: Excessive inflammatory responses and failed resolution are major common causes of tissue injury and organ dysfunction in a variety of diseases, including multiple sclerosis (MS), diabetes, and most recently, COVID-19, despite the distinct pathoetiology of the diseases. The promotion of the natural process of inflammatory resolution has been long recognized to improve functional recovery and disease outcomes effectively. To mitigate the excessive inflammation in MS, scientific investigations identified a group of derivatives of omega fatty acids, known as specialized pro-resolving lipid mediators (SPM) that have been significantly effective in treating preclinical disease models of MS. METHODS: This chapter is based on our observations from MS. It is being increasingly deliberated that the ongoing COVID-19 infection induces severe cytokine storm that ultimately triggers rampant inflammation. The impact of infection and associated mortality is much higher in patients with co-morbid diseases. Also, reports suggest a better outcome in diabetic patients with reasonable glycemic control, which certainly hints towards a hidden role of anti-hyperglycemic drugs such as metformin in alleviating disease pathology through its anti-inflammatory feature. Notably, SPM and metformin share common therapeutic features in exerting a broad-spectrum anti-inflammatory activity in human patients with a superior safety profile. RESULTS: When there is an immediate need to encounter the fast-rampant infection of COVID-19 and control the viral-infection associated morbid inflammatory cytokine storm causing severe organ damage, SPM and metformin should be seriously considered as a potential adjunctive treatment. CONCLUSION: Given the fact that current treatment for COVID-19 is only supportive, global research is aimed at developing safe and effective therapeutic options that can result in a better clinical course in patients with comorbid conditions. Accordingly, taking a cue from our experiences in controlling robust inflammatory response in MS and diabetes by simultaneously inhibiting inflammatory process and stimulating its resolution, combinatorial therapy of metformin and SPM in COVID-19 holds significant promise in treating this global health crisis.


Subject(s)
COVID-19 , Cytokine Release Syndrome , Multiple Sclerosis , COVID-19/complications , Cytokine Release Syndrome/virology , Humans , SARS-CoV-2
6.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: covidwho-1450313

ABSTRACT

Cancer therapy reduces tumor burden via tumor cell death ("debris"), which can accelerate tumor progression via the failure of inflammation resolution. Thus, there is an urgent need to develop treatment modalities that stimulate the clearance or resolution of inflammation-associated debris. Here, we demonstrate that chemotherapy-generated debris stimulates metastasis by up-regulating soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4). Therapy-induced tumor cell debris triggers a storm of proinflammatory and proangiogenic eicosanoid-driven cytokines. Thus, targeting a single eicosanoid or cytokine is unlikely to prevent chemotherapy-induced metastasis. Pharmacological abrogation of both sEH and EP4 eicosanoid pathways prevents hepato-pancreatic tumor growth and liver metastasis by promoting macrophage phagocytosis of debris and counterregulating a protumorigenic eicosanoid and cytokine storm. Therefore, stimulating the clearance of tumor cell debris via combined sEH and EP4 inhibition is an approach to prevent debris-stimulated metastasis and tumor growth.


Subject(s)
Eicosanoids/metabolism , Epoxide Hydrolases/biosynthesis , Macrophages/immunology , Neoplasm Metastasis/pathology , Receptors, Prostaglandin E, EP4 Subtype/biosynthesis , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/pathology , Cell Death/drug effects , Cell Line, Tumor , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Cytokines/metabolism , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Neoplasm Metastasis/prevention & control , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Phagocytosis/immunology , RAW 264.7 Cells
7.
Food Chem Toxicol ; 152: 112184, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1176688

ABSTRACT

The innate immune cells play an important role in handling early infections, and can eliminate them completely up to a certain threshold. Beyond that threshold they take up their role in "The Resolution of Inflammation". The recognition of the SARS-CoV-2 antigen triggers an eicosanoid storm and initiates a robust inflammatory response. This establishes a positive feedback loop which develops into a sustained cytokine storm which interferes with the activation of adaptive immune cells. The mechanism of this interaction, and hence the pathogenesis of the virus with the immune system, is yet to be determined. In silico studies predict a direct SARS-CoV-2 spike glycoprotein interaction with nicotinic acetylcholine receptors, which could impair macrophage function and initiate the cascade of events in severe infections. We here, add to the hypothesis that immune dysregulation can be caused by the interaction of the SARS-CoV-2 spike glycoprotein via a cryptic epitope with the α7-nAChR in Type-1 macrophages, discuss its implications for the treatment of COVID-19 patients, and present better prospects for the design and dissemination of more effective vaccines and their importance.


Subject(s)
COVID-19/immunology , Macrophages/virology , Spike Glycoprotein, Coronavirus/immunology , alpha7 Nicotinic Acetylcholine Receptor/immunology , Epitopes , Humans
8.
Biofactors ; 47(1): 6-18, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-950385

ABSTRACT

Specialized proresolving mediators (SPMs) are endogenous lipid metabolites of long-chain polyunsaturated fatty acids that are involved in promoting the resolution of inflammation. Many disease conditions characterized by excessive inflammation have impaired or altered SPM biosynthesis, which may lead to chronic, unresolved inflammation. Exogenous administration of SPMs in infectious conditions has been shown to be effective at improving infection clearance and survival in preclinical models. SPMs have also shown tremendous promise in the context of inflammatory lung conditions, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease, mostly in preclinical settings. To date, SPMs have not been studied in the context of the novel Coronavirus, severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), however their preclinical efficacy in combatting infections and improving acute respiratory distress suggest they may be a valuable resource in the fight against Coronavirus disease-19 (COVID-19). Overall, while the research on SPMs is still evolving, they may offer a novel therapeutic option for inflammatory conditions.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Docosahexaenoic Acids/therapeutic use , Lipoxins/therapeutic use , Lung Injury/drug therapy , Pulmonary Disease, Chronic Obstructive/drug therapy , Respiratory Distress Syndrome/drug therapy , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Herpes Simplex/drug therapy , Herpes Simplex/metabolism , Herpes Simplex/pathology , Humans , Influenza, Human/drug therapy , Influenza, Human/metabolism , Influenza, Human/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung Injury/metabolism , Lung Injury/pathology , Lung Injury/virology , Periodontitis/drug therapy , Periodontitis/metabolism , Periodontitis/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/virology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2/pathogenicity , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/pathology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/pathology
9.
Cancer Metastasis Rev ; 39(2): 337-340, 2020 06.
Article in English | MEDLINE | ID: covidwho-209469

ABSTRACT

Severe coronavirus disease (COVID-19) is characterized by pulmonary hyper-inflammation and potentially life-threatening "cytokine storms". Controlling the local and systemic inflammatory response in COVID-19 may be as important as anti-viral therapies. Endogenous lipid autacoid mediators, referred to as eicosanoids, play a critical role in the induction of inflammation and pro-inflammatory cytokine production. SARS-CoV-2 may trigger a cell death ("debris")-induced "eicosanoid storm", including prostaglandins and leukotrienes, which in turn initiates a robust inflammatory response. A paradigm shift is emerging in our understanding of the resolution of inflammation as an active biochemical process with the discovery of novel endogenous specialized pro-resolving lipid autacoid mediators (SPMs), such as resolvins. Resolvins and other SPMs stimulate macrophage-mediated clearance of debris and counter pro-inflammatory cytokine production, a process called inflammation resolution. SPMs and their lipid precursors exhibit anti-viral activity at nanogram doses in the setting of influenza without being immunosuppressive. SPMs also promote anti-viral B cell antibodies and lymphocyte activity, highlighting their potential use in the treatment of COVID-19. Soluble epoxide hydrolase (sEH) inhibitors stabilize arachidonic acid-derived epoxyeicosatrienoic acids (EETs), which also stimulate inflammation resolution by promoting the production of pro-resolution mediators, activating anti-inflammatory processes, and preventing the cytokine storm. Both resolvins and EETs also attenuate pathological thrombosis and promote clot removal, which is emerging as a key pathology of COVID-19 infection. Thus, both SPMs and sEH inhibitors may promote the resolution of inflammation in COVID-19, thereby reducing acute respiratory distress syndrome (ARDS) and other life-threatening complications associated with robust viral-induced inflammation. While most COVID-19 clinical trials focus on "anti-viral" and "anti-inflammatory" strategies, stimulating inflammation resolution is a novel host-centric therapeutic avenue. Importantly, SPMs and sEH inhibitors are currently in clinical trials for other inflammatory diseases and could be rapidly translated for the management of COVID-19 via debris clearance and inflammatory cytokine suppression. Here, we discuss using pro-resolution mediators as a potential complement to current anti-viral strategies for COVID-19.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/drug therapy , Pneumonia, Viral/drug therapy , Respiratory Distress Syndrome/therapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Betacoronavirus/isolation & purification , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokines/immunology , Cytokines/metabolism , Eicosanoids/immunology , Eicosanoids/metabolism , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Humans , Macrophages/immunology , Macrophages/metabolism , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Pulmonary Alveoli/immunology , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/virology , Respiratory Distress Syndrome/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL